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Abstract—In this paper, we statistically analyze the impact
of the quantization and the fixed-point implementation on the
performance of the min-sum LDPC layered decoding algorithm.
In particular, we show how the growth of the LLR (Log of
Likelihood Ratio) values under finite precision results in the
saturation and performance degradation. We then propose a
freezing-based min-sum decoding algorithm for the fixed-point
implementation. We show that the proposed approach overcomes
the saturation problems at high SNRs and improves the decoding
performance drastically. Furthermore, we discuss an optimum
uniform quantization scheme, which minimizes the quantization
error of the channel LLR values.

Index Terms—Belief propagation, Fixed-point implementation,
LDPC codes, min-sum decoding algorithm.

I. I NTRODUCTION

Low Density Parity Check codes (LDPC) have recently re-
ceived considerable attention in the error control coding field,
due to the low complexity of their decoding algorithms [1].
Furthermore, this class of codes performs near the Shannon
bound for long enough block lengths.

Among different families of decoding algorithms, the well-
known belief propagation (BP) algorithm provides a good de-
coding performance [2]. However, BP algorithm requires large
hardware complexity. A simplified variation of BP algorithm,
called min-sum decoding algorithm, significantly reduces the
hardware complexity at the cost of performance degradation.
Recently, the normalized min-sum decoding algorithm has
been preferred in many practical and finite precision appli-
cations since it provides acceptable decoding performanceas
compared to BP algorithm for regular codes [3]. However,
for the most irregular LDPC codes, the normalized min-sum
decoding algorithm performs poorly under finite precision
implementation [4], [5]. Most of irregular LDPC codes have
a large amount of low-degree variable nodes. These vari-
able nodes require more number of iterations to converge
as compared to high-degree variables nodes. Furthermore,
finite precision decoding further decreases the convergence
rate of the low-degree variable nodes due to the quantization
effects. In [6], [7], authors propose different variationsof
min-sum algorithm to improve the decoding performance at
the cost of slower convergence rate and higher hardware
complexity. For instance, in [6], the authors proposed thatthe
variable nodes can use a down-scaled intrinsic information
iteratively to improve the reliability of extrinsic information
at the variable nodes. The down-scaling in intrinsic values

reduces the convergence speed. Furthermore, the down scaling
factor needs to be optimized for a specific number of iterations.
In this paper we propose a low-complex freezing-based min-
sum decoding algorithm to overcome the saturation problem
and improve the decoding performance for the fixed-point
implementation.

The paper is organized as follows. In Section II, we intro-
duce the protograph LDPC codes and provide the background
of min-sum layered decoding algorithm. In Section III, we
statistically analyze the impact of the quantization and the
fixed-point implementation on the performance of the min-
sum layered decoding algorithm. Furthermore, we discuss an
optimum uniform quantization scheme, which minimizes the
quantization error of the channel LLR values. In Section IV,
we propose the freezing-based min-sum decoding algorithm.
We show the simulation results in Section V. We then conclude
the paper in Section VI.

II. LDPC CODES AND MIN-SUM LAYERED DECODING

A low-density parity-check code is defined by a sparseM ′×
N ′ parity check matrix, whereM ′ represents the number of
parity checks andN ′ represents the number of codeword’s
bits. The parity check matrixH of an LDPC code can be
illustrated by a Tanner graph, whereCH andVH denote the set
of check nodes and variable nodes respectively. LDPC codes
are usually decoded using message passing algorithms. One
important subclass of these algorithms is belief propagation
(BP) algorithm. In this algorithm, the CNs and VNs pass their
beliefs or probabilities over the corresponding Tanner graph.
There exists several realization of BP algorithm. The most
well-known realization is the Sum-Product (SP). However, this
algorithm requires large amount of hardware complexity. On
the other hand, min-sum algorithm is a suboptimal variation
of SP, which provides less complexity in price of degradation
in performance.

Consider the binary phase-shift keying (BPSK) modulation
and additive white Gaussian noise (AWGN) channel. The
reception corresponding to thejth bit can be represented as:
yj =

√
Pbj + nj , whereP denotes the transmitted power,

bj ∈ {−1, 1} andnj is a zero-mean Gaussian variable with
variance ofσ2. We define the conditional Log-Likelihood
Ratios (LLR) as follows:Lpr

j = log
prob(bj=0|yj)
prob(bj=1|yj)

= 2
σ2 yj. If

bjs are equiprobable, then we have the following distribution
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The LLR values (Lpr
j ) are the input to the channel decoder

block. We next discuss min-sum layered decoding algorithm
1 over protograph codes and show how the LLR values are
utilized in the decoding process.

A. Protograph LDPC codes and min-sum layered decoding
algorithm

The structure-based family of LDPC codes has found
considerable attentions as it simplifies the architecture of
the decoder drastically. Among the members of this family,
protograph-based LDPC codes have been frequently appeared
in the industry [8]. A protograph is a relatively small Tanner
graph, from which a larger graph can be built up by the follow-
ing copy-and-permute procedure. The protograph is copiedZ

times, whereZ denotes the lifting factor. The identical edges
will be then permutated among the corresponding replicas.
Let theM ×N matrixHp denote the adjacency matrix of the
protograph. In this work, we only consider protographs withno
parallel edges, and so the entries ofHp belong to{0, 1}. We
also defineI(s)Z×Z as aZ×Z identity matrix, circularly shifted
to the right bys positions. The adjacency matrix of the derived
LDPC code, i.e.H, can be characterized as follows: 1) Replace
every “0” inHp by 0Z×Z , where0Z×Z denotes theZ×Z zero
matrix. 2) Replace every “1” inHp by I(s)Z×Z , where the values
of s are randomly chosen from[0, · · · , Z − 1]. Therefore,
the size of matrixH is MZ × NZ. In protograph-based
LDPC codes, theZ replicas of each CN in the protograph
form a layer. Hence, the CNs of the LDPC code can be
represented by:CH =

⋃M

l=1 Cl, where Cl = {cl1, · · · , clZ}
denotes the set of check nodes in thelth layer. Note that
each layer consists of a set of contention-free CNs (i.e., only
one CN can access a given VN memory at a precise time),
which can be processed in parallel without contention. In our
design, each decoding iteration consists ofM sub-iterations,
corresponding to each layer. For each layer, all the check
nodes update their values in parallel. This process will go on
in serial for different layers until all the check nodes update
their values. These types of decoding algorithms are mainly
called “Layered Decoding” in LDPC literatures [9]–[11]. Let
Ncli

= {p|vp is connected tocli} denote the index sets of the
neighbors of the check nodecli. The min-sum layered decoding
algorithm can be then summarized as follows:

• Initialization: Fork = 0, the check-to-variable messages,
ρcl

i
→vj

(0), for 1 ≤ i ≤ Z and 1 ≤ l ≤ M are

initialized to zero. Furthermore,Lps,0
j (0) = L

pr
j , for

1 ≤ j ≤ NZ, whereLps,l
j (k) denotes the posterior LLR

value corresponding to thejth variable node at iteration
k and layerl.

1This algorithm is known as the normalized min-sum layered decoding in
LDPC literatures, however, for simplicity we call it min-sum layered decoding
in this paper.

• At iteration k and layerl:
- Each check node atlth layer receives the following
messages from its VN neighbors:

ρvj→cl
i
(k) = L

ps,l−1
j (k)− ρcl

i
→vj

(k − 1) (2)
for j ∈ Ncl

i
and 1 ≤ i ≤ Z. We also haveLps,0

j (k) =

L
ps,M
j (k − 1).

- Each check node will then send the following value to
its VN neighbors

ρcl
i
→vj

(k) =
εcl

i
,vj

(k)

α
min

p∈N
cl
i
\{j}

|ρvp→cl
i
(k)| (3)

where εcl
i
,vj

(k) =
∏

p∈N
cl
i
\{j} sgn

(

ρvp→cl
i
(k)

)

with

sgn(.) denotes the sign operator.α is the scaling factor.
Defineml

i(k) , argminp∈N
cl
i

|ρvp→cl
i
(k)| andnl

i(k) ,

argminp∈N
cl
i
\ml

i
(k) |ρvp→cl

i
(k)|. Therefore, Eq. 3 will be

simplified as:

ρcl
i
→vj

(k) =











ε
cl
i
,vj

(k)

α
|ρv

ml
i
(k)

→cl
i
(k)|, j 6= ml

i(k);

ε
cl
i
,vj

(k)

α
|ρv

nl
i
(k)
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(k)|, j = ml

i(k).

• The posterior LLR value is updated as:
L

ps,l
j (k) = ρvj→cl

i
(k) + ρcl

i
→vj

(k). (4)
• Hard decisions are then made based on the sign of the

posterior LLR values. The syndrome of the codeword is
then checked in order to detect the error.

In the next section, we investigate the impact of the quanti-
zation and the fixed-point implementation on the performance
of the min-sum layered decoding algorithm.

III. F IXED-POINT EFFECTS

In order to characterize the trade-offs between hardware
complexity and decoding performance, the effects of finite
precision should be analyzed. The finite-precision imple-
mentation of LDPC decoding requires the following steps
1- Quantization of the channel LLR values 2- Fixed-point
implementation of decoding algorithm. For the first step, we
devise an optimum uniform quantizer (in Mean Square Error
(MSE) sense) for the channel LLR values and characterize
the underlying trade-offs. We then analyze the performanceof
min-sum decoding algorithm under finite precision constraint.
Our analysis in this section will be accounted as the basis for
the proposed algorithm in the subsequent section.

A. LLR quantization

In this part, we devise an optimum uniform quantizer (in
MSE sense) for the channel LLR values. In Eq. 1, we showed
the distribution of LLR for the BPSK modulation over AWGN
channel. LetQq,∆(x) denote the q-bit quantizer with the step
size∆, defined as follows:

Qq,∆(x) ,







(2q−1 − 1)∆, x ≥ 2q−3
2 ∆;

⌊ x
∆ + 1

2⌋∆, − 2q−1
2 ∆ < x < 2q−3

d
∆;

−2q−1∆, x ≤ − 2q−1
2 ∆.

Fig. 1 shows mean square quantization error of LLR values, i.e
E
{

[

L
pr
j −Qq,∆

(

L
pr
j

)]2
}

, as a function of quantizer step size
(∆). As can be seen, for a fixed number of bits, quantization
with small values of step size introduces large amount of error
due to the saturation. However, large values of step size will
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not capture the required resolution for high-probable values
of LLR, which again results in a significant error. Therefore,
there exists some tradeoffs for the value of the step size.
The following theorem characterizes the optimum uniform
quantizer, which minimizes the mean square quantization error
of LLR values.

Theorem 1. Definefµ,s(x, y) , 1√
2πs

(

e−
(x−µ)2

2s2 −e−
(y−µ)2

2s2

)

and gµ,s(x, y) , Q
(

x−µ

s

)

− Q
(

y−µ

s

)

, where Q(z) =
∫∞
z

1√
2π

e−
1
2 z

2

dz denotes the Q-function. Let∆opt denote the
optimum value of∆, which minimizes MSE of LLR quantiza-
tion. We then have,∆opt = min∆C

q
P,σ(∆), where

C
q
P,σ(∆) =

4

σ4
(P + σ2) +
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∑

i=−2q−1

1

2
∆2i2

(

g 2
√

P
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σ
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q,∆
n+1

)

+ g− 2
√

P

σ2 , 2
σ

(

αq,∆
n , α

q,∆
n+1

)

)

−∆i

[
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σ2
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(5)

andαq,∆
n =







−∞, n = −2q−1;
2n−1

2 ∆, −2q−1 + 1 ≤ n ≤ 2q−1 − 1;
∞, n = 2q−1.

.

Proof: The optimum ∆, in mean square sense, can
be characterized as follows:∆opt = min∆

∫∞
−∞

[

x −

Qq,∆(x)
]2

p(x)dx. We then have,
∫ ∞

−∞

[

x−Qq,∆(x)
]2

p(x)dx

=
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∑
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∫ α
q,∆
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i
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×
∫ α
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− 2∆i

∫ α
q,∆
i+1

α
q,∆
i

xp(x)dx

]

+
4

σ4
(P + σ2) (6)

The integration part can be easily derived using change of
variables.

Fig. 1 also shows that∆opt is an increasing function of
the channel SNR. For this simulation, we fix the transmitted
power atP = 10watt and change the channel noise power in
order to get different channel SNRs. It can be seen from Eq. 1
as channel SNR increases,p(x) becomes wider, which results
in a larger values for∆opt. Next, we characterize the impact
of the fixed-point implementation on the performance of the
LDPC decoding.
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Fig. 1. Mean square quantization error v.s. quantizer step size for q = 8 and
P = 10watt.

B. Fixed-point implementation of min-sum layered decoding
algorithm

In this part, we analyze the impact of fixed-point im-
plementation on the performance of the min-sum layered
decoding algorithm without early stopping (i.e. using fixed
number of iterations). For our analysis, we consider two modes
of 1) floating-point operations and 2) fixed-point operations.
Furthermore, we pick the layered decoding design in our
analysis. For the floating-point operations, we utilize themin-
sum algorithm, where all the operations occur in floating-point
mode. However, in the fixed-point implementation, we assume
that the mathematical operations happen over the fixed number
of bits. In this case, if an operation results in a number which
exceeds the maximum allowed number of bits, the decoder
clips the value to the nearest allowable value.

−4 −2 0 2 4 6 8 10 12
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10
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B
E

R

 

 

MCS2, floating point
MCS6, floating point
MCS10, floating point
MCS2, fixed point 6.1
MCS6, fixed point 6.1
MCS10, fixed point 6.1

divergence for the
fixed point at high

SNRs

Fig. 2. Comparison between floating-point and fixed-point implementation of
min-sum layer decoding algorithm for (672,336) irregular LDPC code and
different modulation schemes in IEEE 802.11ad standard. The figure shows
the performance after 8 number of iterations.

Fig. 2 shows the performance of both floating and fixed
point implementations for 672-bit LDPC codes with rate of
the 1

2 . It also compares the decoding performance for different
modulation schemes of IEEE 802.11ad standard [12] (more
information about this standard as well as different Modulation
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and Coding Schemes (MCS) are provided in Section V). As
can be seen, for small values of SNR, the fixed point scheme
provides a similar performance as the float point one. However,
after a certain point as channel SNR increases, the fixed point
scheme diverges. In order to understand this behavior, we
numerically analyze the Probability Density Function (PDF)
of the extrinsic messages.
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Fig. 3. Normalized histogram of the VNs of degree 3 for (672,336) irregular
LDPC and channel SNR of 0dB – (top) floating-point min-sum layered
decoding, (bottom) 4.3 fixed-point min-sum layered decoding.

Fig. 3 shows the PDF of the extrinsic messages updated
at VNs for both floating and fixed-point schemes. For the
fixed-point analysis, we consider 4.3 quantization scheme.2.
Fig. 3 (top) shows the dynamic of the VNs (of degree 3) for
the floating-point scheme. As can be seen, as the number of
iterations increases the LLR values start growing. The higher
value of LLR in each VN represents less uncertainty in the
corresponding vote. However, in fixed-point implementation,
we have a few number of bits to store the values of extrinsic
messages. Therefore, these values become saturated as they
pass the allowable range of variations. For instance, Fig. 3
(bottom) shows the impact of saturation atk = 3. Another
impact of the saturation can be observed atk = 8. As can be
seen, after 8 iterations, the extrinsic values will be around zero
with higher probability as compared tok = 3. This behavior is
not desirable. From Eq. 2 and Eq. 4, we can easily show that
L

ps,l
j (k) = L

ps,l−1
j (k) + ρcli→vj

(k) − ρcli→vj
(k − 1). Assume

L
ps,l−1
j (k) = Q

q,∆
max, whereQq,∆

max > 0 denotes the maximum
allowable value of the quantizer. Ifρcl

i
→vj

(k) > ρcl
i
→vj

(k−1),

thenLps,l
j (k) = Q

q,∆
max. However, ifρcl

i
→vj

(k) < ρcl
i
→vj

(k−1),

then we haveLps,l
j (k) < L

ps,l−1
j (k) = Q

q,∆
max. Therefore, satu-

ration can decrease the posterior probability, as we observed in
Fig. 3 (bottom). In the next section, we propose an algorithm,
which overcomes the saturation defects.

2This quantization scheme implies 4bits for the integer and 3bits for the
fraction part.

IV. A FREEZING-BASED LOW-COMPLEX MIN-SUM

ALGORITHM

In this section, we propose a freezing-based min-sum al-
gorithm, which overcomes the saturation problem. In Fig. 3,
we observed that as the number of iterations increases, the
LLR values start growing up. However, due to the saturation,
these values can not exceed the allowable range. In such cases,
the saturated LLR values start moving toward zero, which is
not desirable. In order to overcome this problem, we freeze
the posterior LLR values as soon as they reach the saturation
regions.

Let I lj(k) denote the saturation indicator of the posterior
LLR values corresponding to thejth variable node at timek
and layerl. We then haveI lj(k) = FR(L

ps,l
j (k)), where

FR(z) =

{

0, −2R−1 < z < 2R−1 − 1;
1, otherwise.

(7)

Define the saturation function as

SR(z) ,







−2R−1, z ≤ −2R−1;
z, −2R−1 < z < 2R−1 − 1;
2R−1 − 1, z ≥ 2R−1 − 1.

(8)

for z ∈ Z. The proposed fixed-point and freezing-based min-
sum decoding algorithm can be summarized as follows:

• Initialization: For k = 0, the check-to-variable mes-
sages are initialized to zero. Furthermore,L

ps,0
j (0) =

QR+1,∆opt(L
pr
j ) andI lj(0) = 0 for 1 ≤ j ≤ NZ.

• At iteration k and layerl:
- Each check node atlth layer receives the following
messages from its VN neighbors:
ρvj→cl

i
(k) =







SR

(

L
ps,l−1
j (k)− ρcl

i
→vj

(k − 1)
)

, I lj(k) = 0;

SR

(

L
ps,l−1
j (k)

)

, I lj(k) = 1.

(9)
for j ∈ Ncl

i
and 1 ≤ i ≤ Z. We also haveLps,0

j (k) =

L
ps,M
j (k − 1).

- Each check node will then send the following value to
its VN neighbors

ρcl
i
→vj

(k) =










SR

( ε
cl
i
,vj

(k)

α
|ρv

ml
i
(k)

→cl
i
(k)|

)

, j 6= ml
i(k);

SR

( ε
cl
i
,vj

(k)

α
|ρv

nl
i
(k)

→cl
i
(k)|

)

, j = ml
i(k).

where ml
i(k), nl

i(k) and εcl
i
,vj

(k) are as defined in
Section II-A.

• The posterior LLR value is updated as:

L
ps,l
j (k) =

{

ρvj→cl
i
(k) + ρcl

i
→vj

(k), I lj(k) = 0;

L
ps,l−1
j (k), I lj(k) = 1.

• Hard decisions are then made based on the sign of the
posterior LLR values. The syndrome of the codeword is
then checked in order to detect the error.

Fig. 4 shows the block diagram of the freezing-based min-
sum layered decoding algorithm. As can be seen, in the
proposed algorithm, the check node operations occur in R
bits. However, variable nodes require R+1 bits. This design
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α=4/3

Fig. 4. Block diagram of the proposed freezing-based min-sum layered
decoding algorithm.

requires only one saturation unit, which further reduces the
implementation complexity. As we mentioned in the algorithm,
an indicator bit is required to monitor the saturation status of
each variable node. In order to decrease the number of required
bits, this bit is generated from the stored LLR values using
the circuit logics. The saturation indicator bit activatesthe
writing disable switch of thejth variable node. Furthermore,
this bit is connected to the select input of Multiplexer B,
which activates the zero input of the Multiplexer, when the
variable node value is in the saturation region. As can be seen,
in this design Multiplexer B is placed before CN memory
unit, hence, it is not part of the critical path. However, this
design results in one time-step delay in Eq. 9 whenI lj(k)
becomes one. Our simulation results, however, confirm that
the performance loss is negligible as compared to the original
case, where Multiplexer B is placed in critical path and after
the memory unit. Fig. 5 shows the PDF of the extrinsic

Fig. 5. Normalized histogram of the VNs of degree 3 for (672,336) irregular
LDPC and channel SNR of 0dB for the proposed freezing-based min-sum
layered decoding algorithm.

messages updated at VNs for the proposed freezing-based min-
sum layered decoding algorithm. As can be seen the proposed
algorithm overcomes the saturation problem of Fig. 3 (bottom).

For instance, after 8 iterations, the extrinsic values willbe
around zero with negligible probability as compared tok = 3.

V. SIMULATION RESULTS

Next, we show the performance of the proposed
algorithm. All the simulations were performed using
WiGigIEEE\802.11ad LDPC codes [12]. Here, we show the
simulation results for the following schemes: MCS2, MCS6
and MCS10, where they utilize BPSK, QPSK and 16QAM
modulations respectively. Furthermore, all these schemesuse
672-bit irregular protograph LDPC codes with the rate of1

2 .
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Fig. 6. Comparison between floating-point and the proposed freezing-based
min-sum layered decoding algorithm for (672,336) irregular LDPC code and
different modulation schemes in IEEE 802.11ad standard.

Fig. 6 compares the performance of the proposed freezing-
based min-sum layered decoding algorithm with the floating-
point one after 8 decoding iterations. The freezing-based al-
gorithm is implemented under 6.1 bit constraint. Furthermore,
Fig. 6 also compares the decoding performance for different
modulation schemes. As can be seen, the proposed algorithm
overcomes the saturation problem and provides a very close
performance to the floating-point scheme, which is the ultimate
reference for the fixed-point implementation.

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

2.0
3.0
4.0
5.0
6.0
float

−4 −2 0 2 4 6 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

2.0
3.0
4.0
6.0
float

Fig. 7. Bit precision for freezing-based min-sum layered decoding algorithm–
(left) MSC2 and (right) MCS10.
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Fig. 7 (left) and Fig. 7 (right) compare the performance
of the proposed algorithm with the floating-point min-sum
layered decoding under different bit precisions for MCS2 and
MCS10 of IEEE 802.11ad standard respectively. As can be
seen, as the number of bits increases the performance of
the proposed algorithm becomes better. Furthermore, for both
modulation schemes and under 4.0 bit constraint, the proposed
freezing-based algorithm provides the similar performance to
the floating-point approach.

As can be seen, the proposed fixed-point decoder reaches the
the floating-point performance under low hardware complex-
ity. The impact of quantization on the decoding performance
has been discussed in several literatures. For instance, in[13]
authors investigated the impact of fixed-point quantization
on the performance of sum-product decoder and proposed a
dually-quantized sum-product decoder to mitigate the error
floor. They reported the results for the SNRs between 2.5dB
and 6.5dB. However, the proposed freezing-based approach,
requires less hardware complexity and provides a wider op-
erating range of SNRs for a fixed number of iterations. As
another alternative, authors in [6] suggested that the variable
nodes can use a down-scaled intrinsic information iteratively to
improve the reliability of extrinsic information at the variable
nodes for the fixed-point implementation. This approach re-
quires different weights for different VNs, depending on their
degrees, which increases the decoder complexity. Furthermore,
the down scaling factor needs to be optimized for a specific
number of iterations. As another drawback, the down-scaling
weights reduce the convergence speed of the high degree
variable nodes. The proposed freezing-based approach in this
paper, requires less hardware complexity. Furthermore, we
compared the results with the floating point alternative, which
is the ultimate reference.

VI. CONCLUSION

In this paper, we analyzed the impact of the quantization
and the fixed-point implementation on the performance of
the min-sum layered decoding algorithm. We then proposed
a freezing-based min-sum decoding algorithm for the fixed
implementation. We showed that the proposed approach over-
comes the saturation problems at high SNRs and improves the
decoding performance drastically. Furthermore, we devised an
optimum uniform quantization scheme, which minimizes the
quantization error of the channel LLR values. Our simulation
results show that the proposed algorithm can almost reach the
floating-point decoding performance under 4.0 quantization
scheme.
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